生物物理学 I Handout No. 3

Figure 11-10 The Na⁺-K⁺ ATPase.

This carrier protein actively pumps Na⁺ out of and K⁺ into a ce11 against heir electrochemical gradients. For every molecule of ATP hydrolyzed inside the cell, three Na⁺ are pumped out and two K⁺ are pumped in. The specific pump inhibitor ouabain and K⁺ compete for the same site on the external side of the ATPase.

Na ⁺	5-15	145
K*	140	5
Mg ²⁺	0.5	1-2
Ca ²⁺	10-4	1-2
H+	7×10^{-5} (10 ^{-7.2} M or pH 7.2)	4×10^{-5} (10 ^{-7.4} M or pH 7.4)
Anions*		
Cl-	5-15	110

*The cell must contain equal quantities of + and – charges (that is, be electrically neutral). Thus, in addition to Cl⁻, the cell contains many other anions not listed in this table; in fact, most cellular constituents are negatively charged (HCO₃, PO₄³⁻, proteins, nucleic acids, metabolites carrying phosphate and carboxyl groups, etc.). The concentrations of Ca²⁺ and Mg²⁺ given are for the free ions. There is a total of about 20 mM Mg²⁺ and 1–2 mM Ca²⁺ in cells, but this is mostly bound to proteins and other substances and, in the case of Ca²⁺, stored within various organelles.

Figure 2.3 Electrochemical equilibrium.

(A) A membrane permeable only to K⁺ separates compartments 1 and 2, which contain the indicated concentrations of KCI. (B) Increasing the KCI concentration in compartment 1 to 10 mM initially causes a small movement of K⁺ into compartment 2 (initial conditions) until the electromotive force acting on K⁺ balances the concentration gradient, and the net movement of K⁺ becomes zero (at equilibrium). (C) The relationship between the transmembrane potential. As predicted by the Nernst equation, this relationship is linear when plotted on semilogarithmic coordinates, with a slope of 58 mV per tenfold difference in the concentration gradient.

FIGURE 2.1 Cell Membrane and Ion Channel.

(A) The cell membrane is composed of a lipid bilayer embedded with proteins. Some of the proteins traverse the lipid layer and some of these membrane-spanning proteins form membrane channels. (B) This schematic representation shows a membrane channel in cross section, with a central water-filled pore and channel "gate" (G). The gate opens and closes irregularly; the probability of opening may be regulated by the membrane potential, by the binding of a ligand to the channel, or by other biophysical or biochemical conditions. A sodium ion, surrounded by a single shell of water molecules, is shown to scale in the pore for size comparison.