Nakatani, K., Koutalos, Y. and Yau, K.-W. (1995). Ca2+ modulation of the cGMP-gated channel of retinal rod photoreceptors. J. Physiol., 484.1:69-76.

[ABSTRACT]

1. The outer segment of an isolated rod photoreceptor from the bullfrog retina was drawn into a pipette containing choline solution for recording membrane current. The rest of the cell was sheared off with a glass probe to allow internal dialysis of the outer segment with a bath potassium solution ('truncated rod outer segment' preparation). The potential between the inside and the outside of the pipette was held at 0 mV.
2. Application of bath cGMP, in the presence of 3-isobutyl-1-methylxanthine (IBMX), gave rise to an outward membrane current. At saturating cGMP concentrations, this current was insensitive to intracellular Ca2+ at concentrations between 0 and 10 microM. At subsaturating cGMP concentrations, however, this current was inhibited by intracellular Ca2+. This sensitivity to Ca2+ declined after dialysis with a low-Ca2+ solution, suggesting the involvement of a soluble factor.
3. At low (nominally 0) Ca2+, the half-maximal activation constant and Hill coefficient for the activation of the cGMP-gated current by cGMP were 27 microM and 2.0, respectively. At high (ca 10 microM) Ca2+, the corresponding values were 40 microM cGMP and 2.4.
4. The inhibition of the current by Ca2+ was characterized at 20 microM cGMP. Ca2+ inhibited the current by up to 60%, with half-maximal inhibition at 48 nM Ca2+ and a Hill coefficient of 1.6.