|  | ゾウリムシの行動、化学受容に関するもの: 内藤豊著 「単細胞動物の行動」 UP BIOLOGY 東京大学出版 Brehm, P., Eckert, R. 1978. Calcium entry leads to inactivation of calcium channels in Paramecium. Science 202: 1203-1206 Naitoh Y, Eckert R (1969) Ionic mechanisms controlling behavioral responsesof Paramecium to mechanical stimulation. Science 164: 963-965
 Naitoh, Y., Kaneko, H. 1972. Reactivated Triton-extracted models of Paramecium: Modification of ciliary movement by calcium ions. Science 176: 523-524 Nakazato K, Naitoh Y (1993) Quantitative analysis of chemoaccumulationin specimens of Paramecium caudatum in relation to their motile activities.
 J Exp Biol 176: 1-10
 Takahashi M, Haga N, Hennessy T, Hinrichsen RD, Hara R (1985)A gamma ray-induced non-excitable membrane mutant in Paramecium caudatum: a behavioral and genetic analysis. Genet Res Camb 46: 1-10
 Van Houten J (1992) Chemosensory transduction in eucaryotic microorganisms.Annu Rev Physiol 54: 639-663
 Oami K (1996a) Membrane potential responses controlling chemodispersal of Paramecium caudatum from quinine. J Comp Physiol A 178: 307-316 Oami K (1996b) Distribution of chemoreceptors to quinine on the cell surface of Paramecium caudatum. J Comp Physiol A 179: 345-352 Oami, K. (1998a) Membrane potential responses of Paramecium caudatum to bitter substances: existence of multiple pathways for bitter responses. J. Exp. Biol. 201: 13-20 Oami, K. (1998b) Ionic mechanisms of depolarizing and hyperpolarizing quinine receptor potentials in Paramecium caudatum. Journal of Comparative Physiology A, 182: 403-409 Oami, K., Takahashi, M. (2002) Identification of the Ca2+ conductance responsible for K+-induce backward swimming in Paramecium caudatum. J. Memb. Biol., 190; 159-165 Oami, K. and Takahashi, M. (2003)K+-induced Ca2+ conductance responsible for the prolonged backward swimming in K+-agitated mutant of Paramecium caudatum.
 J. Membrane Biol. 195, 85-92.
 Gonda, K, Yoshida, A, Oami, K. and Takahashi, M. (2004)Centrin is essential for the activity of the ciliary reversal-coupled voltage-gated Ca2+ channels.
 Biochem. Biophys. Res. Commun. 323, 891-897
 Oami, K. and Takahashi, M. (2004)Membrane potential responses of Paramecium caudatum to Na+.
 Zool. Sci. 21, 1091-1097
 Gonda, K., Oami, K., and Takahashi, M. (2007)Centrin controls the activity of the ciliary reversal-coupled voltagegated Ca2+ channels Ca2+-dependently.
 Biochem. Biophys. Res. Commun. 362, 170?|176
 Kawamoto, K., Nishikawa, Y., Oami, K., Jin, Y., Sato, I. Saitoh, N. and Tsuda, S. (2008) Effects of PFOS on swimming behavior and membrane potential of Paramecium caudatum.J. Toxicol. Sci. 33, 155-161
 Liu, L., Liu, W., Song, J.L., Yu, H.Y., Jin, Y.H., Oami, K., Sato, I., Saito, N. and Tsuda, S. (2009) A comparative study on oxidative damage and distributions of perfluorooctane sulfonate (PFOS) in mice at different postnatal developmental stages J. Toxicol. Sci. 34, 245-254 |  |  | 
			
				| ヤコウチュウの行動制御に関するもの: Eckert, R. (1965)Bioelectric control of bioluminescence in the dinoflagellate Noctiluca. I. Specific nature of triggering events.
 Science 147:1140-1142
 
 Eckert and Sibaoka (1967)
 Bioelectric regulation of tentacle movement in a dinoflagellate.
 J. Exp. Biol. 47, 433-446
 
 Eckert R, Sibaoka T (1968)
 The flash-triggering action potential of the luminescent dinoflagellate Noctiluca. J Gen Physiol 52: 258-282
 Hisada, M. (1957)Membrane resting and action potentials from a protozoan, Noctiluca scintillans.
 J. Cell. Comp. Physiol. 50,57-71
 
 Nawata, T. and Sibaoka, T. (1976)
 Ionic composition and pH of the vacuolar sap in marine dinoflagellate Noctiluca.
 Plant Cell Physiol. 17, 265-272
 
 Nawata, T. and Sibaoka, T. (1979)
 Coupling between action potential and bioluminescence in Noctiluca: effects of inorganic ions and pH in vacuolar sap.
 J. Comp. Physiol. 134, 137-149
 
 Sibaoka, T. and Eckert, R. (1967)
 An electrophysiological study of the tentacle regulating potential in Noctiluca.
 J. Exp. Biol. 47, 447-459
 Oami, K., Sibaoka, T. and Naitoh, Y. (1988)Tentacle regulating potentials in Noctiluca miliaris: their generation sites and ionic mechanisms.
 J. Comp. Physiol. A 162, 179-185.
 Oami, K. and Naitoh, Y. (1989)H+-dependent contraction of the Triton extracted tentacle of the
 dinoflagellate Noctiluca miliaris.
 J. Exp. Biol. 145, 1-8.
 Oami, K. and Naitoh, Y. (1989)Bioelectric control of effector responses in the marine dinoflagellate, Noctiluca miliaris.
 Zool. Sci., 6, 833-850.
 Oami, K.,Naitoh, Y. and Sibaoka, T. (1990)Distribution of ion channels in the membrane of the dinoflagellate Noctiluca miliaris.
 J. Exp. Biol. 150, 473-478.
 Oami, K. and Naitoh, Y. (1991)Bioelectiric control of tentacular movement in a dinoflagellate Noctiluca miliairs.
 Biomed. Res. 12, Suppl. 2, 101-102.
 Oami K, Naitoh Y, Sibaoka T (1995)Voltage-gated ion conductances corresponding to regenerative positive and negative spikes in the dinoflagellate Noctiluca miliaris.
 J Comp Physiol A 176: 625-633
 Oami, K., Naitoh, Y. and Sibaoka, T. (1995)Modification of voltage-sensitive inactivation of Na+ current by external Ca2+ in the marine dinoflagellate Noctiluca miliaris.
 J. Comp. Physiol. A 176, 635-640.
 Koike, M. and Oami, K. (1996)Modification of the voltage dependent Na+ conductance by external pH in the dinoflagellate Noctiluca miliaris.
 Zool. Sci. 13, 777-782.
 Oami, K. (2004)Correlation between membrane potential responses and tentacle movement in the dinoflagellate Noctiluca miliaris.
 Zool. Sci. 21, 131-138.
 |  |  |